--- title: "Model stacking for boosted trees" output: rmarkdown::html_document: toc: true toc_float: false toc_depth: 4 number_sections: false highlight: "textmate" css: "custom.css" bibliography: stackgbm.bib vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Model stacking for boosted trees} --- ```{r, include=FALSE} knitr::opts_chunk$set( comment = "#>", collapse = TRUE ) run <- if (rlang::is_installed(c("catboost", "lightgbm", "xgboost"))) TRUE else FALSE knitr::opts_chunk$set(eval = run) ``` ## Introduction Model stacking [@wolpert1992stacked] is a method for ensemble learning that combines the strength of multiple base learners to drive up predictive performance. It is a particularly popular and effective strategy used in machine learning competitions. stackgbm implements a two-layer stacking model: the first layer generates "features" produced by gradient boosting trees. The boosted tree models are built by xgboost [@chen2016xgboost], lightgbm [@ke2017lightgbm], and catboost [@prokhorenkova2018catboost]. The second layer is a logistic regression that uses these features as inputs. ```{r, message=FALSE} library("stackgbm") ``` ## Generate data Let's generate some data for demonstrate purposes. The simulated data has a $1000 \times 50$ predictor matrix with a binary outcome vector. 800 samples will be in the training set and the rest 200 will be in the (independent) test set. 25 out of the 50 features will be informative and follows $N(0, 10)$. ```{r} sim_data <- msaenet::msaenet.sim.binomial( n = 5000, p = 100, rho = 0.8, coef = c( rnorm(20, mean = 0, sd = 5), rnorm(20, mean = 0, sd = 2), rnorm(20, mean = 0, sd = 1) ), snr = 0.5, p.train = 0.8, seed = 42 ) x_train <- sim_data$x.tr x_test <- sim_data$x.te y_train <- as.vector(sim_data$y.tr) y_test <- as.vector(sim_data$y.te) ``` ## Parameter tuning `cv_xgboost()`, `cv_lightgbm()` and `cv_catboost()` provide wrappers for tuning the most essential hyperparameters for each type of boosted tree models with k-fold cross-validation. The "optimal" parameters will be used to fit the stacking model later. ```{r, eval=FALSE} params_xgboost <- cv_xgboost(x_train, y_train) params_lightgbm <- cv_lightgbm(x_train, y_train) params_catboost <- cv_catboost(x_train, y_train) ``` ```{r, eval=FALSE, echo=FALSE} saveRDS(params_xgboost, file = "vignettes/params_xgboost.rds") saveRDS(params_lightgbm, file = "vignettes/params_lightgbm.rds") saveRDS(params_catboost, file = "vignettes/params_catboost.rds") temp_dir <- "catboost_info" temp_file <- "lightgbm.model" if (dir.exists(temp_dir)) unlink(temp_dir, recursive = TRUE) if (file.exists(temp_file)) unlink(temp_file) ``` ```{r, echo=FALSE} params_xgboost <- readRDS("params_xgboost.rds") params_lightgbm <- readRDS("params_lightgbm.rds") params_catboost <- readRDS("params_catboost.rds") ``` ## Train the stackgbm model ```{r} model_stackgbm <- stackgbm( sim_data$x.tr, sim_data$y.tr, params = list( params_xgboost, params_lightgbm, params_catboost ) ) ``` ## Inference ```{r} roc_stackgbm_train <- pROC::roc( y_train, predict(model_stackgbm, x_train)$prob, quiet = TRUE ) roc_stackgbm_test <- pROC::roc( y_test, predict(model_stackgbm, x_test)$prob, quiet = TRUE ) roc_stackgbm_train$auc roc_stackgbm_test$auc ``` ## Performance evaluation Let's compare the predictive performance between the stacking model and the three types of tree boosting models (base learners) fitted individually. Note that the models and performance metrics should be (bitwise) reproducible on the same operating system but they might vary on different platforms. ```{r, message=FALSE} model_xgboost <- xgboost_train( params = list( objective = "binary:logistic", eval_metric = "auc", max_depth = params_xgboost$max_depth, eta = params_xgboost$eta ), data = xgboost_dmatrix(x_train, label = y_train), nrounds = params_xgboost$nrounds ) model_lightgbm <- lightgbm_train( data = x_train, label = y_train, params = list( objective = "binary", learning_rate = params_lightgbm$learning_rate, num_iterations = params_lightgbm$num_iterations, max_depth = params_lightgbm$max_depth, num_leaves = 2^params_lightgbm$max_depth - 1 ), verbose = -1 ) model_catboost <- catboost_train( catboost_load_pool(data = x_train, label = y_train), NULL, params = list( loss_function = "Logloss", iterations = params_catboost$iterations, depth = params_catboost$depth, logging_level = "Silent" ) ) ``` ### xgboost ```{r} roc_xgboost_train <- pROC::roc( y_train, predict(model_xgboost, x_train), quiet = TRUE ) roc_xgboost_test <- pROC::roc( y_test, predict(model_xgboost, x_test), quiet = TRUE ) roc_xgboost_train$auc roc_xgboost_test$auc ``` ### lightgbm ```{r} roc_lightgbm_train <- pROC::roc( y_train, predict(model_lightgbm, x_train), quiet = TRUE ) roc_lightgbm_test <- pROC::roc( y_test, predict(model_lightgbm, x_test), quiet = TRUE ) roc_lightgbm_train$auc roc_lightgbm_test$auc ``` ### catboost ```{r} roc_catboost_train <- pROC::roc( y_train, catboost_predict( model_catboost, catboost_load_pool(data = x_train, label = NULL) ), quiet = TRUE ) roc_catboost_test <- pROC::roc( y_test, catboost_predict( model_catboost, catboost_load_pool(data = x_test, label = NULL) ), quiet = TRUE ) roc_catboost_train$auc roc_catboost_test$auc ``` ### Tabular summary We can summarize the AUC values in a table. ```{r, echo=FALSE} df <- as.data.frame(matrix(NA, ncol = 4, nrow = 2)) names(df) <- c("stackgbm", "xgboost", "lightgbm", "catboost") rownames(df) <- c("Training", "Testing") df$stackgbm <- c(roc_stackgbm_train$auc, roc_stackgbm_test$auc) df$xgboost <- c(roc_xgboost_train$auc, roc_xgboost_test$auc) df$lightgbm <- c(roc_lightgbm_train$auc, roc_lightgbm_test$auc) df$catboost <- c(roc_catboost_train$auc, roc_catboost_test$auc) knitr::kable( df, digits = 4, caption = "AUC values from four models on training and testing set" ) ``` ### ROC curves Plot the ROC curves of all models on the independent test set. ```{r} #| roc-curves, #| message=FALSE, #| fig.asp=1, #| fig.width=5, #| fig.dpi=300, #| fig.align="center", #| out.width="65%" pal <- c("#e15759", "#f28e2c", "#59a14f", "#4e79a7", "#76b7b2") plot(pROC::smooth(roc_stackgbm_test), col = pal[1], lwd = 1) plot(pROC::smooth(roc_xgboost_test), col = pal[2], lwd = 1, add = TRUE) plot(pROC::smooth(roc_lightgbm_test), col = pal[3], lwd = 1, add = TRUE) plot(pROC::smooth(roc_catboost_test), col = pal[4], lwd = 1, add = TRUE) legend( "bottomright", col = pal, lwd = 2, legend = c("stackgbm", "xgboost", "lightgbm", "catboost") ) ``` ## Notes on categorical features [xgboost](https://cran.r-project.org/package=xgboost/vignettes/discoverYourData.html#conversion-from-categorical-to-numeric-variables) and [lightgbm](https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html#categorical-feature-support) both prefer the categorical features to be encoded as integers. For [catboost](https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic), the categorical features can be encoded as character factors. To avoid possible confusions, if your data has any categorical features, we recommend converting them to integers or use one-hot encoding, and use a numerical matrix as the input. ## References