Package: enpls 6.1

enpls: Ensemble Partial Least Squares Regression

An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.

Authors:Nan Xiao [aut, cre], Dong-Sheng Cao [aut], Miao-Zhu Li [aut], Qing-Song Xu [aut]

enpls_6.1.tar.gz
enpls_6.1.zip(r-4.5)enpls_6.1.zip(r-4.4)enpls_6.1.zip(r-4.3)
enpls_6.1.tgz(r-4.4-any)enpls_6.1.tgz(r-4.3-any)
enpls_6.1.tar.gz(r-4.5-noble)enpls_6.1.tar.gz(r-4.4-noble)
enpls_6.1.tgz(r-4.4-emscripten)enpls_6.1.tgz(r-4.3-emscripten)
enpls.pdf |enpls.html
enpls/json (API)
NEWS

# Install 'enpls' in R:
install.packages('enpls', repos = c('https://nanxstats.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nanxstats/enpls/issues

Pkgdown site:https://nanx.me

Datasets:
  • alkanes - Methylalkanes Retention Index Dataset
  • logd1k - LogD7.4 Data for 1,000 Compounds

On CRAN:

chemometricsdimensionality-reductionensemble-learningmachine-learningoutlier-detectionpartial-least-squares-regression

5.56 score 18 stars 40 scripts 289 downloads 1 mentions 13 exports 79 dependencies

Last updated 3 years agofrom:fc3aee22ba. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 14 2025
R-4.5-winOKJan 14 2025
R-4.5-linuxOKJan 14 2025
R-4.4-winOKJan 14 2025
R-4.4-macOKJan 14 2025
R-4.3-winOKJan 14 2025
R-4.3-macOKJan 14 2025

Exports:cv.enplscv.ensplsenpls.adenpls.fitenpls.fsenpls.maeenpls.odenpls.rmseenpls.rmsleenspls.adenspls.fitenspls.fsenspls.od

Dependencies:askpassbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmennetopensslpillarpkgconfigplotlyplsplyrpromisespurrrR6rappdirsRColorBrewerRcppreshape2rlangrmarkdownsassscalessplsstringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml

A Brief Introduction to enpls

Rendered fromenpls.Rmdusingknitr::rmarkdownon Jan 14 2025.

Last update: 2021-12-21
Started: 2016-06-23

Readme and manuals

Help Manual

Help pageTopics
Methylalkanes Retention Index Datasetalkanes
Cross Validation for Ensemble Partial Least Squares Regressioncv.enpls
Cross Validation for Ensemble Sparse Partial Least Squares Regressioncv.enspls
Ensemble Partial Least Squares for Model Applicability Domain Evaluationenpls.ad
Ensemble Partial Least Squares Regressionenpls.fit
Ensemble Partial Least Squares for Measuring Feature Importanceenpls.fs
Mean Absolute Error (MAE)enpls.mae
Ensemble Partial Least Squares for Outlier Detectionenpls.od
Root Mean Squared Error (RMSE)enpls.rmse
Root Mean Squared Logarithmic Error (RMSLE)enpls.rmsle
Ensemble Sparse Partial Least Squares for Model Applicability Domain Evaluationenspls.ad
Ensemble Sparse Partial Least Squares Regressionenspls.fit
Ensemble Sparse Partial Least Squares for Measuring Feature Importanceenspls.fs
Ensemble Sparse Partial Least Squares for Outlier Detectionenspls.od
logD7.4 Data for 1,000 Compoundslogd1k
Plot cv.enpls objectplot.cv.enpls
Plot cv.enspls objectplot.cv.enspls
Plot enpls.ad objectplot.enpls.ad
Plot enpls.fs objectplot.enpls.fs
Plot enpls.od objectplot.enpls.od
Plot enspls.ad objectplot.enspls.ad
Plot enspls.fs objectplot.enspls.fs
Plot enspls.od objectplot.enspls.od
Make Predictions from a Fitted Ensemble Partial Least Squares Modelpredict.enpls.fit
Make Predictions from a Fitted Sparse Ensemble Partial Least Squares Modelpredict.enspls.fit
Print cv.enpls Objectprint.cv.enpls
Print cv.enspls Objectprint.cv.enspls
Print enpls.ad Objectprint.enpls.ad
Print Fitted Ensemble Partial Least Squares Objectprint.enpls.fit
Print enpls.fs Objectprint.enpls.fs
Print enpls.od Objectprint.enpls.od
Print enspls.ad Objectprint.enspls.ad
Print Fitted Ensemble Sparse Partial Least Squares Objectprint.enspls.fit
Print enspls.fs Objectprint.enspls.fs
Print enspls.od Objectprint.enspls.od