Package: enpls 6.1
enpls: Ensemble Partial Least Squares Regression
An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.
Authors:
enpls_6.1.tar.gz
enpls_6.1.zip(r-4.5)enpls_6.1.zip(r-4.4)enpls_6.1.zip(r-4.3)
enpls_6.1.tgz(r-4.4-any)enpls_6.1.tgz(r-4.3-any)
enpls_6.1.tar.gz(r-4.5-noble)enpls_6.1.tar.gz(r-4.4-noble)
enpls_6.1.tgz(r-4.4-emscripten)enpls_6.1.tgz(r-4.3-emscripten)
enpls.pdf |enpls.html✨
enpls/json (API)
NEWS
# Install 'enpls' in R: |
install.packages('enpls', repos = c('https://nanxstats.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nanxstats/enpls/issues
chemometricsdimensionality-reductionensemble-learningmachine-learningoutlier-detectionpartial-least-squares-regression
Last updated 3 years agofrom:fc3aee22ba. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | OK | Nov 15 2024 |
R-4.5-linux | OK | Nov 15 2024 |
R-4.4-win | OK | Nov 15 2024 |
R-4.4-mac | OK | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports:cv.enplscv.ensplsenpls.adenpls.fitenpls.fsenpls.maeenpls.odenpls.rmseenpls.rmsleenspls.adenspls.fitenspls.fsenspls.od
Dependencies:askpassbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmennetopensslpillarpkgconfigplotlyplsplyrpromisespurrrR6rappdirsRColorBrewerRcppreshape2rlangrmarkdownsassscalessplsstringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml