Package: msaenet 3.1.2.9000

msaenet: Multi-Step Adaptive Estimation Methods for Sparse Regressions

Multi-step adaptive elastic-net (MSAENet) algorithm for feature selection in high-dimensional regressions proposed in Xiao and Xu (2015) <doi:10.1080/00949655.2015.1016944>, with support for multi-step adaptive MCP-net (MSAMNet) and multi-step adaptive SCAD-net (MSASNet) methods.

Authors:Nan Xiao [aut, cre], Qing-Song Xu [aut]

msaenet_3.1.2.9000.tar.gz
msaenet_3.1.2.9000.zip(r-4.5)msaenet_3.1.2.9000.zip(r-4.4)msaenet_3.1.2.9000.zip(r-4.3)
msaenet_3.1.2.9000.tgz(r-4.4-any)msaenet_3.1.2.9000.tgz(r-4.3-any)
msaenet_3.1.2.9000.tar.gz(r-4.5-noble)msaenet_3.1.2.9000.tar.gz(r-4.4-noble)
msaenet_3.1.2.9000.tgz(r-4.4-emscripten)msaenet_3.1.2.9000.tgz(r-4.3-emscripten)
msaenet.pdf |msaenet.html
msaenet/json (API)
NEWS

# Install 'msaenet' in R:
install.packages('msaenet', repos = c('https://nanxstats.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nanxstats/msaenet/issues

On CRAN:

false-positive-controlhigh-dimensional-datalinear-regressionmachine-learningvariable-selection

6.23 score 13 stars 52 scripts 459 downloads 1 mentions 19 exports 12 dependencies

Last updated 4 months agofrom:8cb5ef6ffc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:aenetamnetasnetmsaenetmsaenet.fnmsaenet.fpmsaenet.maemsaenet.msemsaenet.nzvmsaenet.nzv.allmsaenet.rmsemsaenet.rmslemsaenet.sim.binomialmsaenet.sim.coxmsaenet.sim.gaussianmsaenet.sim.poissonmsaenet.tpmsamnetmsasnet

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixmvtnormncvregRcppRcppEigenshapesurvival

A Quick Introduction to msaenet

Rendered frommsaenet.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-05-10
Started: 2016-09-20