Package: msaenet 3.1.2.9000
msaenet: Multi-Step Adaptive Estimation Methods for Sparse Regressions
Multi-step adaptive elastic-net (MSAENet) algorithm for feature selection in high-dimensional regressions proposed in Xiao and Xu (2015) <doi:10.1080/00949655.2015.1016944>, with support for multi-step adaptive MCP-net (MSAMNet) and multi-step adaptive SCAD-net (MSASNet) methods.
Authors:
msaenet_3.1.2.9000.tar.gz
msaenet_3.1.2.9000.zip(r-4.5)msaenet_3.1.2.9000.zip(r-4.4)msaenet_3.1.2.9000.zip(r-4.3)
msaenet_3.1.2.9000.tgz(r-4.4-any)msaenet_3.1.2.9000.tgz(r-4.3-any)
msaenet_3.1.2.9000.tar.gz(r-4.5-noble)msaenet_3.1.2.9000.tar.gz(r-4.4-noble)
msaenet_3.1.2.9000.tgz(r-4.4-emscripten)msaenet_3.1.2.9000.tgz(r-4.3-emscripten)
msaenet.pdf |msaenet.html✨
msaenet/json (API)
NEWS
# Install 'msaenet' in R: |
install.packages('msaenet', repos = c('https://nanxstats.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nanxstats/msaenet/issues
false-positive-controlhigh-dimensional-datalinear-regressionmachine-learningvariable-selection
Last updated 4 months agofrom:8cb5ef6ffc. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | OK | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
R-4.4-win | OK | Oct 31 2024 |
R-4.4-mac | OK | Oct 31 2024 |
R-4.3-win | OK | Oct 31 2024 |
R-4.3-mac | OK | Oct 31 2024 |
Exports:aenetamnetasnetmsaenetmsaenet.fnmsaenet.fpmsaenet.maemsaenet.msemsaenet.nzvmsaenet.nzv.allmsaenet.rmsemsaenet.rmslemsaenet.sim.binomialmsaenet.sim.coxmsaenet.sim.gaussianmsaenet.sim.poissonmsaenet.tpmsamnetmsasnet
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixmvtnormncvregRcppRcppEigenshapesurvival