Package: oneclust 0.3.0
oneclust: Maximum Homogeneity Clustering for Univariate Data
Maximum homogeneity clustering algorithm for one-dimensional data described in W. D. Fisher (1958) <doi:10.1080/01621459.1958.10501479> via dynamic programming.
Authors:
oneclust_0.3.0.tar.gz
oneclust_0.3.0.zip(r-4.5)oneclust_0.3.0.zip(r-4.4)oneclust_0.3.0.zip(r-4.3)
oneclust_0.3.0.tgz(r-4.4-x86_64)oneclust_0.3.0.tgz(r-4.4-arm64)oneclust_0.3.0.tgz(r-4.3-x86_64)oneclust_0.3.0.tgz(r-4.3-arm64)
oneclust_0.3.0.tar.gz(r-4.5-noble)oneclust_0.3.0.tar.gz(r-4.4-noble)
oneclust_0.3.0.tgz(r-4.4-emscripten)oneclust_0.3.0.tgz(r-4.3-emscripten)
oneclust.pdf |oneclust.html✨
oneclust/json (API)
NEWS
# Install 'oneclust' in R: |
install.packages('oneclust', repos = c('https://nanxstats.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nanxstats/oneclust/issues
clustering-algorithmfeature-engineeringhomogeneitypeak-callingunivariate-data
Last updated 9 months agofrom:5aaff4a310. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win-x86_64 | OK | Nov 06 2024 |
R-4.5-linux-x86_64 | OK | Nov 06 2024 |
R-4.4-win-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-aarch64 | OK | Nov 06 2024 |
R-4.3-win-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-aarch64 | OK | Nov 06 2024 |
Exports:cudoneclustsim_postcode_levelssim_postcode_samples
Dependencies:Rcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Masataka Okabe and Kei Ito's Color Universal Design palette | cud |
Maximum homogeneity clustering for one-dimensional data | oneclust |
Simulate the levels and their sizes in a high-cardinality feature | sim_postcode_levels |
Simulate a high-cardinality feature and a binary response | sim_postcode_samples |